Iron Toxicity to Aquatic Life

Pete Cadmus12, Steve Brinkman1, Nicole Vieira12, Melynda May1, William H. Clements2, Hellena Guasch3, Berta Bonet3, Gemma Urrea3, Abbie L. Jefferson1

123

A Re-calculation of the Chronic Iron Criterion Value

Not talking about the 0.3 mg/l drinking water standard
Iron (Fe) is prevalent and unique

History of the current national iron (Fe) standard

How Criterion Values for aquatic life are derived

A re-calculation of the Chronic Iron Criterion Value

Not talking about the 0.3 mg/l drinking water standard

Literature Search
Single Species Experiments
Mesocosms Experiments

Fe x Cu x Zn experiments

Overall Observations
Questions / Discussion
>23,000 abandoned mines in Colorado per USEPA

Map: USGS Mineral Resources Data System (MRDS)
Numerous mine photos
Ferrous Fe^{++} Fe (II)

Ferric Fe^{+++} Fe (III)
Iron Hydroxide Fe(OH)_3 Yellow
Iron Oxides Fe_2O_3 Red/Rusty
Floc (controversial term)
Precipitates
An estimated 20,000-50,000 mines in the western United States produce acid mine drainage (AMD) which seriously affects 5,000-10,000 miles of streams (USDA 1993) and has been described as the greatest water quality problem in the Rocky Mountain region (Mineral Policy Center 1997).

Image:

Bold Statement: "In arid western states ... 75-80% of terrestrial vertebrates..."

Chaney, E., W. Elmore, and W. S. Platts. 1990. Livestock grazing on western riparian areas. USEPA

Ferrous Fe++ Fe (II)
Ferric Fe+++ Fe (III)
Iron Hydroxide Fe(OH)₃
Iron Oxides Fe₂O₃ Red/Rusty Floc (controversial term)
Precipitates
Deposition of Ferric Fe

More Toxic
Low Dissolved Oxygen
Low pH

Less Toxic
Fe^{+++}, Ferric
Direct Effects

- Aqueous toxicant passes gill membrane and a chemical mode of toxicity occurs

Indirect Effects

- Turbidity reduces Primary Productivity
- Deposition reduces habitat and induces drift
- Leaf litter decay rates are reduced
- Prey species is lost due to direct toxicity

based on field observations

- 1976 RED BOOK
- CDPHE John Woodling
- 1000µg/L = 1mg/L
- Total Recoverable
- Not experimentally derived
based on laboratory toxicity tests

Disclaimer:
It is not a “Standard” until the state or nation adopts it formally.

What I am showing is a ‘Calculated Criterion Value’ or ‘Calculated Final Chronic Value’
based on laboratory toxicity tests

96 Hour Survival

PPB

0.0
0.2
0.4
0.6
0.8
1.0

50
100
150
200

LC$_{50}$ = 110ppb

based on laboratory toxicity tests
based on laboratory toxicity tests

EC\(_{20}\) = For Chronic

LC\(_{50}\) = 110 ppb

based on laboratory toxicity tests

LC\(_{50}\) = 110 ppb
Based on laboratory toxicity tests

Acute Criteria/Standard (96h)
- Genus 1 = 10ppb
- Genus 2 = 20ppb
- Genus 3 = 70ppb
- Genus 4 = 100ppb
- Genus 5 = 110ppb
- Genus 6 = 210ppb
- Genus 7 = 217ppb
- Genus 8 = 621ppb
- Genus 9 = 638ppb
- Genus 10 = 780ppb
- Genus 11 = 990ppb

95% of Organisms

Chronic Criteria/Standard
- Genus 1 = 01ppb
- Genus 2 = 05ppb
- Genus 3 = 08ppb
- Genus 4 = 10ppb
- Genus 5 = 20ppb
- Genus 6 = 21ppb
- Genus 7 = 217ppb
- Genus 8 = 280ppb

95% of Organisms

\[\text{EC}_{20} = \text{Effect Concentrations that affects 20\% of organisms} \]

Estimate the 95th percentile with line fitting
How Many Taxa?

- ~11,000 invertebrate taxa
- ~1,200 fish
- 500-1200 algae
- Meiofauna
- Fungus
- Bacteria
- Many interactions

Minimum 8 Taxa:
- At least 1 Salmonid
- At least 1 non-Salmonid fish
- At least 1 pelagic crustacean
- At least 1 benthic crustacean
- ...one from a 3rd family in Chordata
- ...one from a phylum other than Chordata and Arthropoda
- At least one insect
- ...one from a phylum not represented

Minimum 8 Taxa:
- Literature search:
 - EPA’s ECOTOX Database
 - Web of Science
 - Ebsco
 - N.I.H’s PubMed
 - Kay.... Our librarian
 - Google Scholar
 - Google.com .fr .at .au .be .ca...
Minimum 8 Taxa:

8

“Acceptable” Literature
-EPA & ASTM
-Highly oxygenated
-Neutral pH (6.5-9)
-Ferric only
-≥ 25d (≥7 for Daphnia)
-Genera in Colorado

Minimum 8 Taxa:

CPW experiments:
Highly oxygenated
Neutral pH (6.5-8.5)
> 30d
Genera in Colorado
Neutralized Fe(III)Cl₂-6 H₂O with Sodium Hydroxide
Vigorously aerated Fe stock

Red= CPW experiments
8 Minimum Taxa

At least 1 Salmonid

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvelinus fontinalis</td>
<td>brook trout</td>
<td>10500</td>
<td>10365</td>
<td>10365</td>
<td>Smith and Sykora 1976</td>
</tr>
<tr>
<td>Salvelinus fontinalis</td>
<td>brook trout</td>
<td>10231</td>
<td></td>
<td></td>
<td>Sykora et al. 1972</td>
</tr>
<tr>
<td>Salmo trutta</td>
<td>brown trout</td>
<td>5146</td>
<td>5146</td>
<td>5146</td>
<td>Co. Parks & Wildlife</td>
</tr>
<tr>
<td>Oncorhynchus kisutch</td>
<td>coho salmon</td>
<td>1889</td>
<td>1889</td>
<td>2510</td>
<td>Smith and Sykora 1976</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>rainbow trout (egg mort)</td>
<td>1483</td>
<td>3335</td>
<td></td>
<td>Goettl and Davies 1977</td>
</tr>
<tr>
<td>Oncorhynchus mykiss</td>
<td>rainbow trout</td>
<td>7500</td>
<td></td>
<td></td>
<td>Steffens et al. 1993</td>
</tr>
<tr>
<td>Prosopium williamsoni</td>
<td>mt. whitefish (growth)</td>
<td>935</td>
<td>935</td>
<td>935</td>
<td>Co. Parks & Wildlife</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L

At least 1 non-Salmonid fish

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pimephales promelas</td>
<td>fathead minnow</td>
<td>569</td>
<td>1067</td>
<td>1067</td>
<td>Birge et al. 1985</td>
</tr>
<tr>
<td>Pimephales promelas</td>
<td>fathead minnow</td>
<td>2000</td>
<td></td>
<td></td>
<td>Smith et al. 1973</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L
8 Minimum Taxa

At least 1 pelagic crustacean

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia carinata</td>
<td>cladoceran</td>
<td>2419</td>
<td>2419</td>
<td>1130</td>
<td>Van Dam et al. 1998</td>
</tr>
<tr>
<td>Daphnia longispina</td>
<td>cladoceran</td>
<td>1690</td>
<td>1690</td>
<td></td>
<td>Randall et al. 1999</td>
</tr>
<tr>
<td>Daphnia magna</td>
<td>cladoceran</td>
<td>4380</td>
<td>890</td>
<td></td>
<td>Biesinger and Christensen 1972</td>
</tr>
<tr>
<td>Daphnia pulex</td>
<td>cladoceran</td>
<td>958</td>
<td>958</td>
<td></td>
<td>Dave 1984</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L

8 Minimum Taxa

At least 1 benthic crustacean

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orconectes limosus</td>
<td>crayfish</td>
<td>22000</td>
<td>22000</td>
<td>22000</td>
<td>Boutet and Chaisemartin 1973</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L
8 Minimum Taxa
One from a 3rd family in Chordata

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufo boreas</td>
<td>boreal toad</td>
<td>2798</td>
<td>2798</td>
<td>2798</td>
<td>Co. Parks & Wildlife</td>
</tr>
</tbody>
</table>

Existing Fe Standard:
1000µg/L = 1mg/L

8 Minimum Taxa
One from a phylum other than Chordata and Arthropoda

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dugesia dorotocephala</td>
<td>planarian</td>
<td>40134</td>
<td>40134</td>
<td>40134</td>
<td>Co. Parks & Wildlife</td>
</tr>
</tbody>
</table>
Minimum Taxa

At least one insect

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexagenia</td>
<td>mayfly</td>
<td>7863</td>
<td>7863</td>
<td>7863</td>
<td>Co. Parks & Wildlife</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L

Minimum Taxa

one from a phylum not represented

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value µg/l</th>
<th>SMCV µg/l</th>
<th>GMCV µg/l</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbriculus variegatus</td>
<td>worm</td>
<td>880</td>
<td>880</td>
<td>880</td>
<td>Co. Parks & Wildlife</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L
<table>
<thead>
<tr>
<th>Rank</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value (µg/L)</th>
<th>SMR V (µg/L)</th>
<th>GMCV (µg/L)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Dugesia dorotocephala</td>
<td>Planarian</td>
<td>40134</td>
<td>40134</td>
<td>40134</td>
<td>This study</td>
</tr>
<tr>
<td>11</td>
<td>Dromiector limosus</td>
<td>Crayfish</td>
<td>22000</td>
<td>22000</td>
<td>22000</td>
<td>Monnet and Chaisemartin 1973</td>
</tr>
<tr>
<td>10</td>
<td>Chironomus riparius</td>
<td>Midge</td>
<td>19811</td>
<td>19811</td>
<td>19811</td>
<td>Radford 1997</td>
</tr>
<tr>
<td>9</td>
<td>Salvelinus fontinalis</td>
<td>Brook trout</td>
<td>9237</td>
<td>9237</td>
<td>9237</td>
<td>Sykora et al. 1975</td>
</tr>
<tr>
<td>8</td>
<td>Hexagenia limbata</td>
<td>Mysis</td>
<td>7863</td>
<td>7863</td>
<td>7863</td>
<td>This study</td>
</tr>
<tr>
<td>7</td>
<td>Salmo trutta</td>
<td>Brown trout</td>
<td>5146</td>
<td>5146</td>
<td>5146</td>
<td>This study</td>
</tr>
<tr>
<td>6</td>
<td>Oncorhyncus kisutch</td>
<td>Coho salmon</td>
<td>4830</td>
<td>4009</td>
<td>5056</td>
<td>Smith and Sykora 1976</td>
</tr>
<tr>
<td></td>
<td>Oncorhyncus kisutch</td>
<td>Coho salmon</td>
<td>3300</td>
<td>3300</td>
<td>3300</td>
<td>Brenter and Cooper 1978</td>
</tr>
<tr>
<td>5</td>
<td>Bufo boreas</td>
<td>Boreal toad (tadpole)</td>
<td>3145</td>
<td>3145</td>
<td>3145</td>
<td>This study</td>
</tr>
<tr>
<td>4</td>
<td>Daphnia magna</td>
<td>Cladoceran</td>
<td>4380</td>
<td>4380</td>
<td>2048</td>
<td>Biesinger and Christiansen 1972</td>
</tr>
<tr>
<td></td>
<td>Daphnia pulex</td>
<td>Cladoceran</td>
<td>958</td>
<td>958</td>
<td>958</td>
<td>Birge et al. 1985</td>
</tr>
<tr>
<td>3</td>
<td>Prosopium williamsoni</td>
<td>Mountain whitefish</td>
<td>1318</td>
<td>1318</td>
<td>1318</td>
<td>This study</td>
</tr>
<tr>
<td>2</td>
<td>Lumbriculus variegatus</td>
<td>Worm</td>
<td>870</td>
<td>870</td>
<td>870</td>
<td>This study</td>
</tr>
<tr>
<td>1</td>
<td>Pimephalas promelas</td>
<td>Fathead minnow</td>
<td>910</td>
<td>688</td>
<td>688</td>
<td>Birge et al. 1985</td>
</tr>
<tr>
<td></td>
<td>Pimephalas promelas</td>
<td>Fathead minnow</td>
<td>520</td>
<td>520</td>
<td>520</td>
<td>Smith et al. 1973</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L
<table>
<thead>
<tr>
<th>RANK</th>
<th>GENUS</th>
<th>GMCV</th>
<th>Ln(GMCV)</th>
<th>Ln(GMCV)^2</th>
<th>P=R/N+1</th>
<th>P^0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Daphnia</td>
<td>2048</td>
<td>7.6246</td>
<td>58.1348</td>
<td>0.3077</td>
<td>0.5547</td>
</tr>
<tr>
<td>3</td>
<td>Prosopium</td>
<td>1318</td>
<td>7.1839</td>
<td>51.6080</td>
<td>0.2308</td>
<td>0.4804</td>
</tr>
<tr>
<td>2</td>
<td>Lumbriculus</td>
<td>870</td>
<td>6.7685</td>
<td>45.8125</td>
<td>0.1538</td>
<td>0.3922</td>
</tr>
<tr>
<td>1</td>
<td>Pimephales</td>
<td>688</td>
<td>6.5338</td>
<td>42.6904</td>
<td>0.0769</td>
<td>0.2774</td>
</tr>
</tbody>
</table>

| SUM | 28.1108 | 198.2457 | 0.7692 | 1.7047 |
| SUM SQUARED | 790.2155 | 39301.3616 | 0.5917 | 2.9059 |

\[S^2 = \frac{\text{SUM}(\ln(GMCV))^2 - (\text{SUM}(\ln(GMCV))^2)}{\text{SUM}(P) - \text{SUM}(P^{0.5})^2/4} \]

\[L = \frac{\text{SUM}(\ln(GMCV)) - S(\text{SUM}(P^{0.5}))}{4} \]

\[A = S(\sqrt{0.5}) + L \]

\[FCV = e^A \]

N= Number of Genera = 26
R= Rank

Is this protective?

499 µg/l Fe

< 50% of national standard
We used the least toxic form of Fe

Some tests were static renewal...
Using mostly pelagic taxa

Should have used benthic organisms

Deposition of Fe floc
Ranking of Test Materials

<table>
<thead>
<tr>
<th>Rank</th>
<th>Scientific name</th>
<th>Common name</th>
<th>Chronic Value</th>
<th>SMCV</th>
<th>GMCV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Dugesia dorotocephala</td>
<td>Planarian</td>
<td>40134</td>
<td>40134</td>
<td>40134</td>
<td>This study</td>
</tr>
<tr>
<td>11</td>
<td>Orconectes limosus</td>
<td>Crayfish</td>
<td>20000</td>
<td>20000</td>
<td>20000</td>
<td>Boutet and Chaisemartin 1973</td>
</tr>
<tr>
<td>10</td>
<td>Chironomus riparius</td>
<td>Midge</td>
<td>19811</td>
<td>19811</td>
<td>19811</td>
<td>Radford 1973</td>
</tr>
<tr>
<td>9</td>
<td>Salvelinus fontinalis</td>
<td>Brook trout</td>
<td>9237</td>
<td>9237</td>
<td>9237</td>
<td>Sykora et al. 1975</td>
</tr>
<tr>
<td>8</td>
<td>Hexagenia limbata</td>
<td>Mayfly</td>
<td>7863</td>
<td>7863</td>
<td>7863</td>
<td>This study</td>
</tr>
<tr>
<td>7</td>
<td>Salmo trutta</td>
<td>Brown trout</td>
<td>5146</td>
<td>5146</td>
<td>5146</td>
<td>This study</td>
</tr>
<tr>
<td>6</td>
<td>Oncorhyncus kisutch</td>
<td>Coho salmon</td>
<td>4870</td>
<td>4870</td>
<td>4870</td>
<td>Smith and Sykora 1976</td>
</tr>
<tr>
<td>5</td>
<td>Bufo boreas</td>
<td>Boreal toad (tadpole)</td>
<td>3145</td>
<td>3145</td>
<td>3145</td>
<td>This study</td>
</tr>
<tr>
<td>4</td>
<td>Daphnia magna</td>
<td>Cladoceran</td>
<td>4580</td>
<td>4580</td>
<td>4580</td>
<td>Biesinger and Christiansen 1972</td>
</tr>
<tr>
<td>3</td>
<td>Prosopium williamsoni</td>
<td>Mountain whitefish</td>
<td>1311</td>
<td>1311</td>
<td>1311</td>
<td>This study</td>
</tr>
<tr>
<td>2</td>
<td>Lumbriculus variegatus</td>
<td>Worm</td>
<td>870</td>
<td>870</td>
<td>870</td>
<td>This study</td>
</tr>
<tr>
<td>1</td>
<td>Pimephales promelas</td>
<td>Fathead minnow</td>
<td>910</td>
<td>688</td>
<td>688</td>
<td>Birge et al. 1985</td>
</tr>
</tbody>
</table>

EPA & ASTM say:

DO NOT FEED THE ANIMALS

Growth

Longer Duration Sublethal Endpoints

Early Life Stages

Reproduction

Existing Fe Standard: 1000µg/L = 1mg/L
Here Comes Pete’s #1 Favorite Graphic

Ecotoxicological Levels of Biological Organization

Ecosystem responses
- Productivity, decomposition, nutrient cycling, food web structure

Community responses
- Direct: loss of sensitive species, reduced species richness
- Indirect: competition, predation

Population responses
- Abundance, sex ratios, age structure, recruitment, genetic structure

Individual responses
- Mortality, growth, reproduction, behavior

Biochemical, physiological responses
- Respiration, metabolism, Metallothionein, MFO, AChE, DNA damage

Increasing ecological relevance and spatiotemporal scale

Increasing mechanistic understanding and specificity
Favorite Graphic Number 2: Trade-Off of Control and Realism in Ecotoxicological Experiments

- **Biomonitoring**
 - Can not show causation

- **Environmental Manipulation Natural Experiments**
 - Illegal

- **Mesocosm Experiments**
 - Can be done legally

- **Field Experiments**
 - Illegal

- **Laboratory Toxicity Experiments**
Biomonitoring

Environmental Manipulation
Natural Experiments

Mesocosm Experiments

Field Experiments

Laboratory Toxicity Experiments

1976 - Presence of Fish in one basin ~1000 µg/l Fe

1976 - Presence of Fish in one basin ~1000 µg/l Fe

1976 - Presence of Fish in one basin ~1000 µg/l Fe
1976 - Presence of fish in one basin ~1000 µg/l Fe
2007 Quantile regression across many sites in Ohio.
210 µg/l to 1,740 µg/l

Biomonitoring

Environmental Manipulation Natural Experiments

Mesocosm Experiments

Field Experiments

Laboratory Toxicity Experiments

499 µg/l
Mesocosm Experiments

• What is it?.... I will give an example

• Mandated in Europe

• Will be “acceptable” data or required by EPA

• Typically find organism are more sensitive

• Multiple species interacting, Diet, Function, etc.

• Increased environmental realism
Deposition of Fe floc
Use random number generator to select trays

8 or 9 of these in a reference stream

Mesocosm Experiments

- Multiple species
- Species interactions
- Small instars
- More environmentally realistic
Based on Densities reported here:

African Elephant

Stolen From: http://patell.org/

Hyrax

Zebra

Arctopsyche grandis

Copyright © 2009 Tim Loh

Tanytarsini

Baetis
Community Mesocosm Experiment

Only **10** days

SUB-chronic

100% **Ferric** Fe

Existing Fe Standard: 1000µg/L = 1mg/L
Mesocosm Video

After 4 days:
0.4 mg/L 1.0 mg/L 2.5 mg/L 6.2 mg/L 15.6 mg/L

Deposition of Fe per day in Stream Mesocosms

\[y = 1.59x + 4.395 \]

\[R^2 = 0.97 \]
Ecosystem: Community Metabolism/Production

Community: Structure & Diversity

Population: Abundance

Individual: Drift Behavior

Biochemical

Increasing ecological relevance and spatiotemporal scale

Increasing mechanistic understanding and specificity

Mesocosm Community Metabolism

Approximate Depth of Stream Mesocosms

Rubber Stoppers, Note: located at corners to purge air prior to assessment

Food Grade Vinyl Tubing

2 L Food Containers

Barbed Hose Fittings

Peristaltic Pump

Vinyl Tubes

Sealed in Epoxy

Note: end tube can flush to epoxy to purge air. Epoxy can be substituted for silicone or a rubber stopper

Clear Acrylic Tube

Dissolved Oxygen Probe
Mesocosm Community Metabolism

<table>
<thead>
<tr>
<th>Total Fe (mg/L)</th>
<th>mgO₂/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.2</td>
</tr>
<tr>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>2.5</td>
<td>0.8</td>
</tr>
<tr>
<td>6.5</td>
<td>0.6</td>
</tr>
<tr>
<td>15</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Existing Fe Standard: 1000µg/L = 1mg/L

Ecosystem: Community Metabolism/Production

Community: Structure & Diversity

Population: Abundance

Individual: Drift Behavior

Biochemical

Increasing ecological relevance and spatiotemporal scale

Increasing mechanistic understanding and specificity
Mesocosm Community Response to Fe Floc
(Treatment = mg/L total Fe)
Only 3 replicates – Error bars are Standard Deviation NOT standard Error
Mesocosm Community Response to Fe Floc

Existing Fe Standard: 1000µg/L = 1mg/L

<table>
<thead>
<tr>
<th>Genus (or tribe/subfamily)</th>
<th>EC$_{20}$ (µg/L)</th>
<th>After only 10 days...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhithrogena sp.</td>
<td>> 14073</td>
<td>3 taxa unprotected</td>
</tr>
<tr>
<td>Ephemerella sp.</td>
<td>> 14073</td>
<td>by our 499 µg/L</td>
</tr>
<tr>
<td>Sweltsa sp.</td>
<td>> 14073</td>
<td></td>
</tr>
<tr>
<td>Brachycentrus sp.</td>
<td>7558</td>
<td></td>
</tr>
<tr>
<td>Baetis sp.</td>
<td>4870</td>
<td></td>
</tr>
<tr>
<td>Capnia sp.</td>
<td>3697</td>
<td></td>
</tr>
<tr>
<td>Cinygmula sp.</td>
<td>1882</td>
<td></td>
</tr>
<tr>
<td>Taenionema sp.</td>
<td>1626</td>
<td></td>
</tr>
<tr>
<td>Heterlimnius sp.</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td>Prostoia sp.</td>
<td>1176</td>
<td></td>
</tr>
<tr>
<td>Orthocladiinae</td>
<td>776</td>
<td></td>
</tr>
<tr>
<td>Micrasema sp.</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Epeorus sp.</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Tanytarsini</td>
<td>234</td>
<td></td>
</tr>
</tbody>
</table>

EC$_{20}$ calculated with TRAP, a toxicology specific program made by the US EPA
Biomonitoring

Environmental Manipulation
Natural Experiment

? µg/l

Mesocosm Experiments

10 day

Field Experiments

499 µg/l

Laboratory Toxicity Experiments

30 day

Environmental Realism

Control & Repeatability

- Dugesia dorotocephala
- Orconectes limosus
- Chromadora riparius
- Rhithrogena sp.
- Sialis sp.
- Ephemereleia sp.
- Salvelinus fontinalis
- Hexagenia limbata
- Brochyncentrus sp.
- Salmo trutta
- Baetis sp.
- Capnia sp.
- Oncorhynchus kisutch and O. mykiss
- Buflo boneas
- Daphnia magna and D. pulex
- Oxygastra sp.
- Proastra sp.
- Laiophleba variegatus
- Orthocodia
- Pimephales promelas
- Microcentrus
- Epeorus sp.
- Tanypus sp.

Genus Mean Chronic Value (µg/l Total Iron)

Percentile

100

80

60

40

20

0

100

1000

10000

Final Chronic Value, including Mesocosm

Single Species Final Chronic Value

Current USEPA Chronic Criterion

5th Percentile
<table>
<thead>
<tr>
<th>RANK</th>
<th>GENUS</th>
<th>GMCV</th>
<th>Ln(GMCV)</th>
<th>Ln(GMCV)**2</th>
<th>P=R/N+1</th>
<th>P**0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Pimephales</td>
<td>688</td>
<td>6.5338</td>
<td>42.6904</td>
<td>0.1481</td>
<td>0.3849</td>
</tr>
<tr>
<td>3</td>
<td>Microsema sp.</td>
<td>356.29</td>
<td>5.8757</td>
<td>34.5244</td>
<td>0.1111</td>
<td>0.3333</td>
</tr>
<tr>
<td>2</td>
<td>Epeorus sp.</td>
<td>334.5</td>
<td>5.8126</td>
<td>33.7867</td>
<td>0.0741</td>
<td>0.2722</td>
</tr>
<tr>
<td>1</td>
<td>Tanytarsini (Tribe)</td>
<td>233.65</td>
<td>5.4538</td>
<td>29.7442</td>
<td>0.0370</td>
<td>0.1925</td>
</tr>
</tbody>
</table>

SUM

<table>
<thead>
<tr>
<th>SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.6760</td>
</tr>
<tr>
<td>660.5527</td>
</tr>
</tbody>
</table>

SUM SQUARED

<table>
<thead>
<tr>
<th>SUM SQUARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.7457</td>
</tr>
<tr>
<td>19809.3584</td>
</tr>
</tbody>
</table>

S2 = SUM(LnGMCV)/2 - (SUM(LnGMCV)/2)^2/4 - SUM(P)/SUM(P**0.5)/4

L=(SUM(LnGMCV)-S*SUM(P**0.5))/4

A=S*SQRT(0.5) + L

FCV=EXP(A)

N= Number of Genera = 26
R= Rank

251 µg/l Fe
25% of national standard

Environmental Realism

Control & Repeatability

1976 - Presence of Fish in one basin ~1000 µg/l Fe
2007 Quantile regression across many sites in Ohio. 210µg/l to 1,740 µg/l

Mesocosm Experiments

499 µg/l

Laboratory Toxicity Experiments
Is this protective?

• Only 10 days duration. Not 30 days. Not a life cycle

If someone wants to sponsor a 30 day trial please contact Prof. William H Clements at Colorado State University.

2011 - Fe x Zn+Cu Periphyton and Invertebrate Communities

<table>
<thead>
<tr>
<th></th>
<th>No Cu & Zn</th>
<th>LM: 10 µg/L Cu</th>
<th>HM: 50 µg/L Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Fe x3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 µg/l Fe x3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 day exposure
Ecosystem
Community
Population
Individual

Increasing ecological relevance and spatiotemporal scale

Biochemical: Enzymes
Cu + Zn + Fe accumulation, Protein

Periphyton Accumulation of Cu & Zn

ANOVA
Fe: p<0.001
M: p<0.001

ANOVA
Fe: p<0.001
M: p<0.001
Fe*M: p<0.01
Ecosystem

Community: Structure & Diversity of Diatoms

Population: Diatom Density

Individual

Biochemical

Increasing ecological relevance and spatiotemporal scale

Increasing mechanistic understanding and specificity
Overall Observations:

- Pelagic vs. Benthic
- Benthic vs. Benthic
- Small vs. Large
- Motility
- Algivorous
Overall Observations:

- Flow Through vs. Static Renewal
- Mesocosm vs. Lab.
- Naturally Colonized Substrate
- Longer Duration
• Evidence that 1,000 µg/l is under-protective
• Using single species experiments we derived a Final Chronic Value of 499 µg/l total Fe.

• Evidence that 499 µg/l is under-protective
• Using mesocosm experiments we derived a Final Chronic Value of 251 µg/l total Fe.

• Seems to match field based studies